科学实用的课程体系
成体系培养,符合行业发展趋势
人工智能
人工智能初级:人工智能技术和应用场景的全面解析,系统化介绍人工智能技术链条
通过实例对人工智能的开发语言载体Python进行深入理解并掌握Python语法规则,变量和数据类型,程序结构控制,Python的数据结构,Python中的OOP,了解-神经网络的训练方法和流程,学习主流机器学习、深度学习框架环境的搭建,TensorFlow、Keras、Caffe等。
人工智能中级:本模块重点在于算法的开发实现方面,学习人工智能中的识别技术
通过数字识别和人脸识别、自然语言处理等这些应用极为广泛的项目开发,深入介绍深度学习的概念,激活函数以及神经网络基础,对CNN、RNN进行原理方法和原理学习,卷积层和池化层,图像特征提取与识别,经典LeNet模型,LSTM,Encoder-Decoder Model等,同时引入自然语言处理方面的内容,包括分词、题干提取建模等,为不同方向的技术学习构建完整的技能知识图谱。
人工智能:从本阶段开始,我们的学习重点转向的模型优化算法上
在项目开发实现的基础上进行调优处理,通过学习过程的优化、数据预处理方法、超参数、学习率优化、Batch-Normalization等方法,实现开发算法的优化,完善提升神经网络的效率和质量,进一步理解算法实现与设计,实现开发工程师提升到算法专家之
数据分析初级:使用Python处理工作场景中的简单数据分析
基于CDBD(*历代人物传记资料库)数据集开发课程案例,介绍数据分析的基本流程和方法,涉及的数据建模方法主要是聚类和决策树,学完之后能够使用Python处理工作场景中的简单数据分析。
数据分析中级:成为具有一定分析思维的数据分析师
基于真实企业数据库开发案例,重点介绍K-近邻、凝聚与分裂(层次聚类算法)、线性回归、朴素贝叶斯等数据建模方法,终成为具有一定分析思维的数据分析师,满足就业需求。
数据分析:成长为一名数据分析师,并获得算法工程师的相关技能
基于前两个阶段学员学习数据开发的在线学习数据分析案例,通过完全贴近真实情境的数据分析工作,学会处理各种数据分析中的复杂问题,所使用的建模方法有支持向量机、DBSCAN、逻辑回归和反向传播神经网络,终成长为一名数据分析师,并获得算法工程师的相关技能,能做出直接跟系统交互的仪表盘。
Python初级:数据可视化
在大量数据的情况下,如何让数据能够更直观,更高效的输出有用的信息就需要借助于数据可视化技术。通过项目实战完全掌握Matplotlib实现简单直观的数据可视化、Echarts实现更丰富的交互需求,在此基础上认识更多的数据可视化库并灵活运用。
Python中级:数据抓取与采集
互联网上存在着海量的数据信息,通过爬虫可以快速高效的获取这些数据。Scrapy爬虫框架是当前非常流行的一款爬虫框架。Scrapy使用Python作为开发语言,并且提供了非常丰富扩展功能,数量掌握Scrapy爬虫框架的使用能够实现高效获取互联网数据的目标。
Python:数据清洗与挖掘
本阶段主要完成数据处理方面的学习,利用Python实现数据清洗与存储相关技能。数据被正式应用于AI核心算法前,需要经过迁移、清洗、分片等多种转换处理,利用Python的numpy、pandas模块有效处理源数据中的空缺值、噪声数据、不一致数据、重复数据等。数据来源、存储环境是多样的,分别来自于JSON、CSV文件,MySQL、Redis、MongoDB数据库,HDFS文件系统等等。利用Python的json、csv、pymysql、redis、pymongo、pyhdfs模块很好地解决了数据存储问题。