1、排除法、代入法
当从正面解答不能很快得出答案或者确定答案是否正确时,可以通过排除法,排除其他选项,得到正确答案。排除法可以与代入法相互结合,将4个选项的答案,逐一带入到题目中验证答案。
例题:
2014年高考*卷Ⅰ理数第11题已知函数f(x)=ax3-3x2+1,若f(x)存在*的零点x0,且x0>0,则a的取值范围为:
A、(2,+∞) B、(-∞,-2) C、(1,+∞) D、(-∞,-1)
解析:取a=3,f(x)=3x3-3x2+1,不合题意,可以排除A与C;取a=-4/3,f(x)=-4x3/3-3x2+1,不合题意,可以排除D;故只能选B
2、特例法
有些选择题涉及的数学问题具有一般性,这类选择题要严格推证比较困难,此时不妨从一般性问题转化到特殊性问题上来,通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速得解。
例题:
2016年高考*卷Ⅱ理数第12题
已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=x+1/x与y=f(x)图像焦点为为(x1,y1),(x2,y2),…,(xm,ym),则∑mi=1(xi+yi)=( )
A、0 B、m C、2m D、4m
解析:由f(-x)=2-f(x)得,f(x)关于(0,1)对称,故可取符合题意的特殊函数f(x)=x+1,联立y=x+1,y=x+1/x,解得交点为(-1,0)和(1,2),所以∑2i=1(xi+yi)=(x1+y1)+(x2+y2)=(-1+0)+(1+2)=2,此m=2,只有选项B符合题意。
3、极限法
当一个变量无限接近一个定量,则变量可看作此定量。对于某些选择题,若能恰当运用极限法,则往往可使过程简单明快。
例题:
对任意θ∈(0,π/2)都有( )
A sin(sinθ) B sin(sinθ)>cosθ>cos(cosθ) C sin(cosθ) D sin(cosθ) 解析:当θ→0时,sin(sinθ)→0,cosθ→1,cos(cosθ)→cos1,故排除A与B;当θ→π/2时,cos(sinθ)→cos1,cosθ→0,故排除C,只能选D。 解答题的答题技巧 通用答题套路 1、三角变换与三角函数的性质问题 ①解题路线图 不同角化同角。 降幂扩角。 化f(x)=Asin(ωx+φ)+h。 结合性质求解。 ②构建答题模板 化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为"一角、一次、一函数"的形式。 整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。 求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。 反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。 2、解三角函数问题 ①解题路线图 化简变形;用余弦定理转化为边的关系;变形证明。 用余弦定理表示角;用基本不等式求范围;确定角的取值范围。 ②构建答题模板 定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。 定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。 求结果。 再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。 3、数列的通项、求和问题 ①解题路线图 先求某一项,或者找到数列的关系式。 求通项公式。 求数列和通式。 ②构建答题模板 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。 写步骤:规范写出求和步骤。 再反思:反思回顾,查看关键点、易错点及解题规范。 4、利用空间向量求角问题 ①解题路线图 建立坐标系,并用坐标来表示向量。 空间向量的坐标运算。 用向量工具求空间的角和距离。 ②构建答题模板 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。 写坐标:建立空间直角坐标系,写出特征点坐标。 求向量:求直线的方向向量或平面的法向量。 求夹角:计算向量的夹角。 得结论:得到所求两个平面所成的角或直线和平面所成的角。 5、圆锥曲线中的范围问题 ①解题路线图 设方程。 解系数。 得结论。 ②构建答题模板 提关系:从题设条件中提取不等关系式。 找函数:用一个变量表示目标变量,代入不等关系式。 得范围:通过求解含目标变量的不等式,得所求参数的范围。 再回顾:注意目标变量的范围所受题中其他因素的制约。 6、解析几何中的探索问题 ①解题路线图 一般先假设这种情况成立(点存在、直线存在、位置关系存在等)。 将上面的假设代入已知条件求解。 得出结论。 ②构建答题模板 先假定:假设结论成立。 再推理:以假设结论成立为条件,进行推理求解。 下结论:若推出合理结果,经验证成立则肯。定假设;若推出矛盾则否定假设。 再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。 7、离散型随机变量的均值与方法 ①解题路线图 标记事件;对事件分解;计算概率。 确定ξ取值;计算概率;得分布列;求数学期望。 ②构建答题模板 定元:根据已知条件确定离散型随机变量的取值。 定性:明确每个随机变量取值所对应的事件。 定型:确定事件的概率模型和计算公式。 计算:计算随机变量取每一个值的概率。 列表:列出分布列。 求解:根据均值、方差公式求解其值。 8、函数的单调性、极值、*值问题 ①解题路线图 先对函数求导;计算出某一点的斜率;得出切线方程。 先对函数求导;谈论导数的正负性;列表观察原函数值;得到原函数的单调区间和极值。 ②构建答题模板 求导数:求f(x)的导数f′(x),注意f(x)的定义域。 解方程:解f′(x)=0,得方程的根。 列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。 得结论:从表格观察f(x)的单调性、极值、*值等。 再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。