天才教育网合作机构 > 培训机构 >

少儿编程培训中心

欢迎您!
朋友圈

400-850-8622

全国统一学习专线 9:00-21:00

位置:培训资讯 > 计算机学习的相关算法,机器学习必学算法

计算机学习的相关算法,机器学习必学算法

日期:2021-07-30 10:29:16     浏览:195    来源:少儿编程培训中心
核心提示:近年来关注计算机学习的相关算法的用户越来越多,小编整理了关于左程云:程序员该如何学习算法?,机器学习必学算法??,供您参考1.左程云:程序员该如何学习算法?大家好,我是左程云。我本科就读于*科技*、

近年来关注计算机学习的相关算法的用户越来越多,小编整理了关于左程云:程序员该如何学习算法?,机器学习必学算法??,供您参考

1.左程云:程序员该如何学习算法?

大家好,我是左程云。我本科就读于华中科技*、硕士毕业于在芝加哥*。先后在IBM、百度、GrowingIO和亚马逊工作,是一个刷题7年的算法爱好者,也是牛客网的老师。2014年起专职做程序员算法和数据结构培训,代码面试培训,刷题交流等相关工作。 我是《程序员代码面试指南--IT名企算法与数据结构题目*解》的作者 ,书籍涉及算法与数据结构编程题目240道以上,并且个人实现出*解,大部分题目为面试高频。这篇我想写写算法的重要性、我个人是如何学习算法以及一些如何学习算法的建议。 算法在求职以及工作后的重要性 求职面试必考(校招+社招),且国内工资越高的面试中算法比重就越大。 我分别说一下国内和国外的行情。 · 国内的话,一般来讲,工资高的公司在面试时算法和数据结构题目的比重较大,工资一般的公司比重较小。当然同样公司的不同岗位,要求也会不同,但总体趋势就是 国内好公司爱考算法和数据结构 。这是目前国内互联网公司的情况。 国外的互联网公司呢,几乎只考算法和数据结构,很多年前就是这样了,一直如此。我相信国内会逐渐变得像国外一样,并不是崇洋媚外,而是算法和数据结构题目真的能考出东西。先抛开算法,我们来说说面试以及如何准备。面试中都会考什么呢? 面试中会考察算法,操作系统,数据库,计算机网络,编程语言,项目(校招涉及)/经历(社招中涉及的更多)如何准备? · 操作系统,数据库,计算机网络,编程语言这些都是平时学习,记住了,理解了,不忘记就可以了项目或者经历是平时准备的,如果马上面试了再去准备也是很难的,作假在面试中会直接被面试官看穿,所以这个平时就要准备好,如果是校招,那平时就要做一做有用的项目,如果是社招,平时在工作中就要用心做。 算法和数据结构,是真的需要好好写代码才能掌握,不是说看了理解了就真正会的了。算法笔试面试的特点就是没有特点,什么样的题都可能遇到,因为根本没有考纲,面试官就是普通的程序员,他们在工作中或者在网络上遇到什么题不错,就可能考,所以内容真的太多了,而且也无穷尽。这不是一个标准考试,这是能力考试。 所以,我建议大家面试或者笔试前抽出20%的时间去理解和记忆非算法和数据结构的题目,剩下的时间就是去刷题。今天学习算法变得越来越重要,虽然每个公司行业不同、岗位复杂,但算法能力强是分析能力和解决问题能力的提现。虽然计算机的处理能力越来越强,但好算法的代码执行效率相比起没有优化的代码,已经不能用快多少倍来描述了。计算机科学有自己的衡量标准,也就我们常说的复杂度标准。同时,学习算法对理解底层实现是非常重要的,优秀的程序员专注细节和底层,具备算法能力是起点更是基础。包括今天很多的领域,比如机器学习,深度学习,还有大热的AI领域,想要研究透彻,都离不开算法好的大脑。还有很重要的,加薪和跳槽,算法都起着非常重要的作用。学习算法可不仅仅是刷题,这一过程中自己的思维和想法的提升才是学习算法的*好处。我是如何学习算法的? 本科在华中科技*计算机,这一期间能在学业上让自己满意的可能就是没有挂科而已。硕士在芝加哥*,出国之前就了解到想要在国外找工作的话,面试时几乎只考算法和数据结构的题目,于是开始了刷题,也就是搜集这方面的题,并且用代码实现出来,不断看题解和与高手讨论。 就这样从2010年到今天,刷了7年算法和数据结构的面试题。刚开始其实只是为了找工作才开始刷题,但是半年之后就变成了兴趣。刚开始刷题的过程中很不顺利,因为很多算法和数据结构,教材也不会讲。而且去网上搜各种各样的分析文章也读不懂,感觉基础差的很远。当时网上的分析文章,也不会像今天这么易懂,高手都是把最核心的点说出来,但是我没摸到人家想说的点之前,就已经不会了。于是就把很多很厚的书拿来啃,书上也看不懂就尽可能的找到高手向人家请教。对书上的题目实现了好几遍,才发现入了门,头脑也开始活泛起来。遇到不会的就查,发现一大片知识不知道就练。在网上发帖被嘲笑的日子,其实非常的涨见识,我很珍视那段岁月。当时在国外,学费也贵,因为钱的刺激和好胜心,居然没有让我变态,而是变成了一种斗志,用了大量的时间好好刷题。刚开始代码实现算法和数据结构的题目真的非常痛苦,因为这部分的内容相比其他方面的知识绝对算高门槛,而我最开始的基础也并不好。现在我经常在网上给同学们讲题,看到同学们表达的抱怨,那简直就是当年的我。暗暗发下心愿,如果有一天讲课,绝对做一个人人都能听懂的好老师。但不管怎么引导,算法学习都是一个脱皮换骨的痛苦过程,但好在会迅速上瘾,坚持半年之后就能一直坚持下去了。算法和数据结构问题的技术累积需要长时间的投入,因为内容又多又杂又难,很多算法是那种你很怀疑自己再来一辈子也可能想不到的解法。当时作为一个小白,一个算法的意思看懂了,实现起来是如此的难,测试用例总能指出我的幼稚;写了很多代码终于过了这一题,看到高手写的实现,自己又幻灭了,高手写的好棒,自己写的……然后收拾起碎裂一地的三观,重新出发。解了很多题目之后,类似的题目出现,自己还是会想很久。这让我意识到,自己缺乏总结,于是开始了总结的过程,也萌生了写书的冲动。刷完一道题其实是一件很难的事情,因为普通解法很容易,但是*解真得去耐着性子研究好久,去查资料,去做优化,这个过程很漫长但是足够迷人。到底应该怎样学习算法,作为过来人,给大家的建议 先跟大家聊聊算法吧。在网络上流行一句话:算法分三种,竞赛的算法、面试的算法、算法。虽然我觉得这么分非常让人无语,但其实可以去这么理解,因为竞赛、面试和纯理论的要求和限制是不同的,所以算法在不同的要求中展现了不同的样子。对于竞赛来说,每道题对输入参数和样本量的要求都是非常明确的,同时规定的非常明确的还有空间的限制和运行时间的限制。每一个竞赛选手都非常熟练怎么根据这些提前给好的限制,反推出自己需要实现一个什么样复杂度的解法才能通过。每一行代码包含着前辈和自己思考过的优化。而对于面试来说,限制往往并不明确,造成这个现象的原因也很好理解。竞赛中当然是分数最重要。在面试的过程中,与面试官的交流和体现自己想事情的方式、体现自己逻辑的严密更重要。所以同一道题,在竞赛中必须写清楚限制,而在面试中一道题刚开始的限制没那么多,目的就是缩短你理解题目的时间,让面试者先写出一点什么,然后和面试官展开讨论,随着讨论的深入,再逐渐的把限制聊清楚。总之在面试的场合就是想看看你想问题的习惯、轨迹以及表达能力是否符合要求。当然,不管是什么要求下的算法,经常练习算法和数据结构题目对一个人在逻辑上的提升都是显而易见的,在学校参加ACM并取得很好成绩的同学,如果不是表达能力特别差的话,是一定会收获很多offer的,因为思维被锻炼的很好。对于算法,我给大家的建议: 先找到线团,然后进入线团里学着怎么玩。为了进入线团,需要先把基础知识掌握好。《算法和数据结构》(教材),你一定要看完+理解。这里面讲的都是不能再基础的东西了,觉得讲得不好,自己搜维基百科。没办法,如果坚持不下来,你后面就受罪去吧。然后有一些很经典的书可以迅速让你进入状态,比如我这本《程序员代码面试指南》,还有《剑指offer》,配合在线练习: 对于很庞大的算法,我个人的习惯是找例子来引导自己的思路,一点一点的接近算法的核心。*需要注意的是,一定要写代码,光看没有用的。对于经典算法的学习,大体上分成几个阶段:*阶段:对于某一个具体的算法,首先要搞清楚这个算法解决的问题是什么,可能是实现一个具体的功能,也可能是在某些方面,比如时间复杂度或者空间复杂度方面很卓越,总之搞清楚这个算法被研究出来的目的是什么。 第二阶段:然后就要弄清楚这个算法的生存环境了,也就是看看你此时研究的东西是不是对别的知识有依赖,应该先把底层依赖的知识理解并掌握。这些问题都解决之后,就进入到算法本身的学习,理解一个算法是一件辛苦的事情,刚开始看必然会产生很多的困惑,比如经常会怀疑作者讲述的内容的重要性?这些内容和这个算法有什么联系呢?经常会有这种摸不着头脑的感觉,其实作者做的铺垫都是为了建立起描述算法主要内容的基础,只有接受和理解这些基础,才能逐渐触碰到算法的精髓,所以耐心是很重要的。 第三阶段:算法的主要过程看完之后,往往还是会感到困惑,主要是不知道这个过程好在哪,这就进入了下一个阶段,理解作者对这个过程在功能性或者效率卓越这件事上的解释和证明。这才真正触碰到算法最精髓的部分,也就是深度的理解算法的主要过程所带来的好处,这才是最锻炼人理解能力的地方。 第四阶段:上面几点是算法学习阶段的过程了,接下来就是研究算法的代码实现,自己设计测试用例亲自跑一下代码,以及从代码运行时间的角度分析这个算法的优势,这也是加深对算法的理解的过程。 第五阶段:*是配合相应的题目练习,让自己通过题目练习的方式,会用、善用学习到的算法,并对这个算法产生一定的敏感程度,具体是指看到某些题目时,能够根据题目的特点,产生与该算法的对应,也就是具备举一反三的能力。 学习永无止境,不管是算法小白,还是有一定的算法基础,提升算法永远都是刚需,我正好要在牛客网即将开一个算法班,针对算法小白的初级班和有一定算法基础的进阶班,如果你想跟我一起学习,也欢迎你报名跟我一起探讨算法,希望所有努力和上心的人都能成为大牛。课程报名: 初级班: 进阶班: 当然,正值双十一,正好牛客网上有个双十一的活动,这样买会比较优惠:

2.机器学习必学算法

本文介绍了 10 大常用机器学习算法,包括线性回归、Logistic 回归、线性判别分析、朴素贝叶斯、KNN、随机森林等。选自Medium,作者:,机器之心编译,参与:Geek AI、路。1. 线性回归在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。预测建模主要关注的是在牺牲可解释性的情况下,尽可能最小化模型误差或做出最准确的预测。我们将借鉴、重用来自许多其它领域的算法(包括统计学)来实现这些目标。线性回归模型被表示为一个方程式,它为输入变量找到特定的权重(即系数 B),进而描述一条*拟合了输入变量(x)和输出变量(y)之间关系的直线。线性回归例如: y = B0 + B1 * x我们将在给定输入值 x 的条件下预测 y,线性回归学习算法的目的是找到系数 B0 和 B1 的值。我们可以使用不同的技术来从数据中学习线性回归模型,例如普通最小二乘法的线性代数解和梯度下降优化。线性回归大约有 200 多年的历史,并已被广泛地研究。在使用此类技术时,有一些很好的经验规则:我们可以删除非常类似(相关)的变量,并尽可能移除数据中的噪声。线性回归是一种运算速度很快的简单技术,也是一种适合初学者尝试的经典算法。2. Logistic 回归Logistic 回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的*方法。像线性回归一样,Logistic 回归的目的也是找到每个输入变量的权重系数值。但不同的是,Logistic 回归的输出预测结果是通过一个叫作「logistic 函数」的非线性函数变换而来的。logistic 函数的形状看起来像一个大的「S」,它会把任何值转换至 0-1 的区间内。这十分有用,因为我们可以把一个规则应用于 logistic 函数的输出,从而得到 0-1 区间内的捕捉值(例如,将阈值设置为 0.5,则如果函数值小于 0.5,则输出值为 1),并预测类别的值。Logistic 回归由于模型的学习方式,Logistic 回归的预测结果也可以用作给定数据实例属于类 0 或类 1 的概率。这对于需要为预测结果提供更多理论依据的问题非常有用。与线性回归类似,当删除与输出变量无关以及彼此之间非常相似(相关)的属性后,Logistic 回归的效果更好。该模型学习速度快,对二分类问题十分有效。3. 线性判别分析Logistic 回归是一种传统的分类算法,它的使用场景仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(LDA)是*的线性分类技术。LDA 的表示方法非常直接。它包含为每个类计算的数据统计属性。对于单个输入变量而言,这些属性包括:每个类的均值。所有类的方差。线性判别分析预测结果是通过计算每个类的判别值、并将类别预测为判别值*的类而得出的。该技术假设数据符合高斯分布(钟形曲线),因此*预先从数据中删除异常值。LDA 是一种简单而有效的分类预测建模方法。4. 分类和回归树决策树是一类重要的机器学习预测建模算法。决策树可以被表示为一棵二叉树。这种二叉树与算法设计和数据结构中的二叉树是一样的,没有什么特别。每个节点都代表一个输入变量(x)和一个基于该变量的分叉点(假设该变量是数值型的)。决策树决策树的叶子结点包含一个用于做出预测的输出变量(y)。预测结果是通过在树的各个分叉路径上游走,直到到达一个叶子结点并输出该叶子结点的类别值而得出。决策树的学习速度很快,做出预测的速度也很快。它们在大量问题中往往都很准确,而且不需要为数据做任何特殊的预处理准备。5. 朴素贝叶斯朴素贝叶斯是一种简单而强大的预测建模算法。该模型由两类可直接从训练数据中计算出来的概率组成:1)数据属于每一类的概率;2)给定每个 x 值,数据从属于每个类的条件概率。一旦这两个概率被计算出来,就可以使用贝叶斯定理,用概率模型对新数据进行预测。当你的数据是实值的时候,通常假设数据符合高斯分布(钟形曲线),这样你就可以很容易地估计这些概率。贝叶斯定理朴素贝叶斯之所以被称为「朴素」,是因为它假设每个输入变量相互之间是独立的。这是一种很强的、对于真实数据并不现实的假设。不过,该算法在大量的复杂问题中十分有效。6. K 最近邻算法K 最近邻(KNN)算法是非常简单而有效的。KNN 的模型表示就是整个训练数据集。这很简单吧?对新数据点的预测结果是通过在整个训练集上搜索与该数据点最相似的 K 个实例(近邻)并且总结这 K 个实例的输出变量而得出的。对于回归问题来说,预测结果可能就是输出变量的均值;而对于分类问题来说,预测结果可能是众数(或最常见的)的类的值。关键之处在于如何判定数据实例之间的相似程度。如果你的数据特征尺度相同(例如,都以英寸为单位),那么最简单的度量技术就是使用欧几里得距离,你可以根据输入变量之间的差异直接计算出该值。K 最近邻KNN 可能需要大量的内存或空间来存储所有数据,但只有在需要预测时才实时执行计算(或学习)。随着时间的推移,你还可以更新并管理训练实例,以保证预测的准确率。使用距离或接近程度的度量方法可能会在维度非常高的情况下(有许多输入变量)崩溃,这可能会对算法在你的问题上的性能产生负面影响。这就是所谓的维数灾难。这告诉我们,应该仅仅使用那些与预测输出变量最相关的输入变量。7. 学习向量量化KNN 算法的一个缺点是,你需要处理整个训练数据集。而学习向量量化算法(LVQ)允许选择所需训练实例数量,并确切地学习这些实例。学习向量量化LVQ 的表示是一组码本向量。它们在开始时是随机选择的,经过多轮学习算法的迭代后,最终对训练数据集进行*的总结。通过学习,码本向量可被用来像 K 最近邻那样执行预测。通过计算每个码本向量与新数据实例之间的距离,可以找到最相似的邻居(最匹配的码本向量)。然后返回最匹配单元的类别值(分类)或实值(回归)作为预测结果。如果将数据重新放缩放到相同的范围中(例如 0 到 1 之间),就可以获得*的预测结果。如果你发现 KNN 能够在你的数据集上得到不错的预测结果,那么不妨试一试 LVQ 技术,它可以减少对内存空间的需求,不需要像 KNN 那样存储整个训练数据集。8. 支持向量机支持向量机(SVM)可能是目前*、被讨论地最多的机器学习算法之一。超平面是一条对输入变量空间进行划分的「直线」。支持向量机会选出一个将输入变量空间中的点按类(类 0 或类 1)进行*分割的超平面。在二维空间中,你可以把他想象成一条直线,假设所有输入点都可以被这条直线完全地划分开来。SVM 学习算法旨在寻找最终通过超平面得到*类别分割的系数。支持向量机超平面与最近数据点之间的距离叫作间隔(margin)。能够将两个类分开的*超平面是具有*间隔的直线。只有这些点与超平面的定义和分类器的构建有关,这些点叫作支持向量,它们支持或定义超平面。在实际应用中,人们采用一种优化算法来寻找使间隔*化的系数值。支持向量机可能是目前可以直接使用的最强大的分类器之一,值得你在自己的数据集上试一试。9. 袋装法和随机森林随机森林是*也最强大的机器学习算法之一,它是一种集成机器学习算法。自助法是一种从数据样本中估计某个量(例如平均值)的强大统计学方法。你需要在数据中取出大量的样本,计算均值,然后对每次取样计算出的均值再取平均,从而得到对所有数据的真实均值更好的估计。Bagging 使用了相同的方法。但是最常见的做法是使用决策树,而不是对整个统计模型进行估计。Bagging 会在训练数据中取多个样本,然后为每个数据样本构建模型。当你需要对新数据进行预测时,每个模型都会产生一个预测结果,Bagging 会对所有模型的预测结果取平均,以便更好地估计真实的输出值。随机森林随机森林是这种方法的改进,它会创建决策树,这样就不用选择*分割点,而是通过引入随机性来进行次优分割。因此,为每个数据样本创建的模型比在其它情况下创建的模型更加独特,但是这种独特的方式仍能保证较高的准确率。结合它们的预测结果可以更好地估计真实的输出值。如果你使用具有高方差的算法(例如决策树)获得了良好的结果,那么你通常可以通过对该算法执行 Bagging 获得更好的结果。10. Boosting 和 是一种试图利用大量弱分类器创建一个强分类器的集成技术。要实现 Boosting 方法,首先你需要利用训练数据构建一个模型,然后创建第二个模型(它企图修正*个模型的误差)。直到*模型能够对训练集进行完美地预测或加入的模型数量已达上限,我们才停止加入新的模型。AdaBoost 是*个为二分类问题开发的真正成功的 Boosting 算法。它是人们入门理解 Boosting 的*起点。当下的 Boosting 方法建立在 AdaBoost 基础之上,最著名的就是随机梯度提升机。 使用浅层决策树。在创建*棵树之后,使用该树在每个训练实例上的性能来衡量下一棵树应该对每个训练实例赋予多少权重。难以预测的训练数据权重会增大,而易于预测的实例权重会减小。模型是一个接一个依次创建的,每个模型都会更新训练实例权重,影响序列中下一棵树的学习。在构建所有的树之后,我们就可以对新的数据执行预测,并根据每棵树在训练数据上的准确率来对其性能进行加权。由于算法在纠正错误上投入了如此多的精力,因此删除数据中的异常值在数据清洗过程中是非常重要的。原文链接:

如果以上内容没有帮到您,欢迎电话联系我们,或者联系在线客服咨询

本文由 少儿编程培训中心 整理发布。更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,可以留下你的联系方式,让课程老师跟你详细解答:
咨询电话:400-850-8622

如果本页不是您要找的课程,您也可以百度查找一下: