科技时代到来,优异也随之而来,我们会去关注一个数学问题,不是什么游戏问题。什么叫级数,用在哪方面的?,数学家高斯的一个小故事,魔兽世界的游戏画面是怎么设计出来的呢?运用了那些技术,工具以及数学知识???,还可以通过一个数学问题,不是什么游戏问题。什么叫级数,用在哪方面的?,数学家高斯的一个小故事,魔兽世界的游戏画面是怎么设计出来的呢?运用了那些技术,工具以及数学知识???进一步去来了解,接下来就跟随作者一起去看看吧!
1.一个数学问题,不是什么游戏问题。什么叫级数,用在哪方面的?
级数series将数列un的项 u1,u2,…,un,…依次用加号连接起来的函数。数项级数的简称。如:u1+u2+…+un+…,简写为∑un,un称为级数的通项,记Sm=∑un称之为级数的部分和。如果当m→∞时 ,数列Sm有极限S,则说级数收敛,并以S为其和,记为∑un=S否则就说级数发散。级数是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:一方面能借助级数表示许多常用的非初等函数, 微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数,例如用幂级数研究非初等函数,以及进行近似计算等。级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :∑un收敛<=>任意给定正数ε,必有自然数N,当n>N,对一切自然数 p,有|un+1+un+2+…+un+p|<ε,即充分靠后的任意一段和的*可任意小。如果每一un≥0(或un≤0),则称∑un为正(或负)项级数,正项级数与负项级数统称为同号级数。正项级数收敛的充要条件是其部分和序列Sm 有上界,例如∑1/n!收敛,因为Sm=1+1/2!+1/3!+···+1/m!<1+1+1/2+1/2^2+···+1/2^(m-1)<3(2^3表示2的3次方)。 有无穷多项为正,无穷多项为负的级数称为变号级数,其中最简单的是形如∑[(-1)^(n-1)]*un(un>0)的级数,称之为交错级数。判别这类级数收敛的基本方法是莱布尼兹判别法 :若un ≥un+1 ,对每一n∈N成立,并且当n→∞时lim un=0,则交错级数收敛。例如∑[(-1)^(n-1)]*(1/n)收敛。对于一般的变号级数如果有∑|un|收敛,则称变号级数绝对收敛。如果只有 ∑un收敛,但是∑|un|发散,则称变号级数条件收敛。例如∑[(-1)^(n-1)]*(1/n^2)绝对收敛,而∑[(-1)^(n-1)]*(1/n)只是条件收敛。 如果级数的每一项依赖于变量x,x 在某区间I内变化,即un=un(x),x∈I,则∑un(x)称为函数项级数,简称函数级数。若x=x0使数项级数∑un(x0)收敛,就称x0为收敛点,由收敛点组成的集合称为收敛域,若对每一x∈I,级数∑un(x)都收敛,就称I为收敛区间。显然,函数级数在其收敛域内定义了一个函数,称之为和函数S(x),即S(x)=∑un(x)如果满足更强的条件,Sm(x)在收敛域内一致收敛于S(x)。一类重要的函数级数是形如∑an(x-x0)^0的级数,称之为幂级数 。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在实数轴上收敛。还有一类非常常用的级数是傅里叶级数。
2.数学家高斯的一个小故事
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。他八岁时进入乡村*读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和*人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
3.魔兽世界的游戏画面是怎么设计出来的呢?运用了那些技术,工具以及数学知识?
游戏制作流程般初期构想和原画表现原画师通过团队起讨论风格主题背景手绘出大家想法经过反复修改终得了魔兽基本画风和基调当场景和人设原画基本确定三维制作组利用3D软件刻画出立体人物和场景模型进行高精度渲染之再由团队监管审核再次经过反复修改确定开始分工合作角色动画设计场景渲染风格道具制作故事线大环境地图等等繁琐工作开始了当些初期准备全部OK再交由游戏程序*开始编写脚本游戏关键环节脚本制作结束整部游戏雏形出现了制作联网服务器内部开始调试试玩开始向部分玩家开放试玩向世界开放测试终上市
上文讲述了一个数学问题,不是什么游戏问题。什么叫级数,用在哪方面的?,数学家高斯的一个小故事,魔兽世界的游戏画面是怎么设计出来的呢?运用了那些技术,工具以及数学知识???,大致对一个数学问题,不是什么游戏问题。什么叫级数,用在哪方面的?,数学家高斯的一个小故事,魔兽世界的游戏画面是怎么设计出来的呢?运用了那些技术,工具以及数学知识???有个简单了解,如还需深了解请联系作者。