大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。那么大数据有哪些意义?可以应用到哪些领域,以下是小编为你整理的大数据都要学什么
变革价值的力量
未来十年,决定*是不是有大智慧的核心意义标准(那个”思想者”),就是国民幸福。一体现到民生上,通过大数据让事情变得澄明,看我们在人与人关系上,做得是否比以前更有意义;二体现在生态上,看我们在天与人关系上,做得是否比以前更有意义。总之,让我们从年的意义混沌时代,进入未来10年意义澄明时代。
变革经济的力量
生产者是有价值的,消费者是价值的意义所在。有意义的才有价值,消费者不认同的,就卖不出去,就实现不了价值;只有消费者认同的,才卖得出去,才实现得了价值。大数据帮助我们从消费者这个源头识别意义,从而帮助生产者实现价值。这就是启动内需的原理。
变革组织的力量
随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。大数据将推动网络结构产生无组织的组织力量。*反映这种结构特点的,是各种各样去中心化的WEB2.0应用,如RSS、维基、博客等。 大数据之所以成为时代变革力量,在于它通过追随意义而获得智慧。
那大数据处理技术怎么学习
首先我们要学习Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java:大家都知道Java的方向有JavaSE、JavaEE、JavaME,学习大数据要学习那个方向呢?只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一下,有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用你很多时间,到*工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反射加上JDBC的各种使用。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
硬盘故障预测
硬盘是服务器硬件故障率*的一个部件,如果能提前预测到硬盘故障,对业务体验、完善备件管理都有莫大的收益。这也是基础架构运营在经历自动化、流程化后,需要进一步提升运营效率、降低运营成本的天然要求。
涉及硬盘的运营数据包括业务IO数据、硬盘内部的SMART和硬盘运行的环境变量数据(温度和湿度)。目前,运营系统对IO数据是每小时采集一次,SMART数据每三小时采集一次,温度和湿度每半小时采集一次,这些数据合计起来每天的记录数上亿条。
分析过程如下:存储类机型,看到一段时间统计出来的IO的利用率并不高,并且是写少读多的应用,是否可以考虑使用IOPS相对不高的廉价硬盘?还是业务的架构存在优化的空间?
服务器利用率分析给运营带来的好处在于:
结合业务模型,发现业务应用服务器的短板,在发现并修复系统架构缺陷的同时,提高整体利用率;
对机型选型的优化,例如对于磁盘容量使用率不高的机型,在后续的机型定制中减少硬盘的数量。
可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单。
数据挖掘算法:大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种 统计方法,才能深入数据内部,挖掘出公道的价值,另外一个方面也是y因为有这些数据挖掘的算法才能更快的处理大数据。
预测性分析能力:大数据分析最重要的应用领域之一就是预测性分析,从大数据种挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
语义引擎:大数据分析广泛应用于网络数据挖掘,可从用户的检索关键词,标签关键词或其他输入语义,分析,判断用户需求。从而实现更好的用户体验和广告匹配。