大数据正在以不可阻拦的磅礴气势,与当代同样具有革命意义的*科技进步 (如纳米技术、生物工程、全球化等)一起,揭开人类新世纪的序幕。大数据宣告了21世纪是人类自主发展的时代,是不以所谓上帝的意志为转移的时代,是上帝失业的时代。大数据对每个人的重要性不亚于人类初期对火的使用。大数据让人类对一切事物的认识回归本源;大数据通过影响经济生活、政治博弈、社会管理、文化教育科研、医疗保健休闲等等行业,与每个人产生密切的联系。以下是小编为你整理的大数据该学什么
大数据技术渗透进入我们每个人的日常生活消费之中,它提供了光怪陆离的全媒体,难以琢磨的云计算,无法抵御的仿真环境。大数据依仗于无处不在的传感器,通过大数据技术,人们能够在医院之外得悉自己的健康情况;而通过收集普通家庭的能耗数据,大数据技术给出人们切实可用的节能提醒;通过对城市交通的数据收集处理,大数据技术能够实现城市交通的优化。
随着科学技术的发展,人类必将实现数千年的机器人梦想。事实上,今天人们已经享受到了部分家用智能机器人给生活带来的便利。比如,智能吸尘器以及广泛应用于汽车工业领域的机器手等等。目前,科学家研发出的智能微型计算机只和雪花一样大,却能够执行复杂的计算任务,将来可以把这些微型计算机安装在任何物件上用以监测环境和发号施令。
在大数据时代,人脑信息转换为电脑信息成为可能。科学家们通过各种途径模拟人脑,试图解密人脑活动,最终用电脑代替人脑发出指令。正如今天人们可以从电脑上下载所需的知识和技能一样,将来也可以实现人脑中的信息直接转换为电脑中的图片和文字,用电脑施展读心术。
随着大数据时代的到来和技术的发展,我们必将进入神奇的智能机器人时代。
大数据技术的发展有可能解开宇宙起源的奥秘。因为,计算机技术将一切信息无论是有与无、正与负,都归结为0与1,原来一切存在都在于数的排列组合,在于大数据。
验证借款人身份
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。企业可以借助国政通的数据来验证姓名、身份证号,借助银联数据来验证银行卡号和姓名,利用运营商数据来验证手机号、姓名、身份证号、家庭住址。
如果借款人是欺诈用户,这五个信息都可以买到。这个时候就需要进行人脸识别了,人脸识别等原理是调用国政通/公安局 API接口,将申请人实时拍摄的照片/视频同客户预留在公安的身份证进行识别,通过人脸识别技术验证申请人是否是借款人本人。
其他的验证客户的方式包括让客户出示其他银行的信用卡及刷卡记录,或者验证客户的学历证书和身份认证。
分析提交的信息来识别欺诈
大部分的贷款申请都从线下移到了线上,特别是在互联网金融领域,消费贷和学生贷都是以线上申请为主的。
线上申请时,申请人会按照贷款公司的要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往 往会出现一些规律,企业可根据异常填写记录来识别欺诈。例如填写不同城市居住小区名字相同、填写的不同城市,不同单位的电话相同、不同单位的地址街道相 同、单位名称相同、甚至居住的楼层和号码都相同。还有一些填写假的小区、地址和单位名称以及电话等。
如果企业发现一些重复的信息和电话号码,申请人欺诈的可能性就会很高。
Hadoop和Hive
一群基于Java的工具被开发出来以满足数据处理的巨大需求。Hadoop作为*的基于Java的框架用于批处理数据已经点燃了大家的热情。Hadoop比其他一些处理工具慢,但它出奇的准确,因此被广泛用于后端分析。它和Hive——一个基于查询并且运行在顶部的框架可以很好地结对工作。
Scala
Scala是另一种基于Java的语言,并且和Java相同的是,它正日益成为大规模机器学习,或构建高层次算法的工具。它富有表现力,并且还能够构建健壮的系统。
“Java就像是建造时的钢铁,而Scala则像黏土,因为你之后可以将之放入窑内转变成钢铁,”Driscoll说。
Kafka和Storm
那么,当你需要快速实时的分析时又该怎么办呢?Kafka会成为你的好朋友。它大概5年前就已经出现了,但是直到最近才成为流处理的流行框架。
Kafka,诞生于LinkedIn内部,是一个超快速的查询消息系统。Kafka的缺点?好吧,它太快了。在实时操作时会导致自身出错,并且偶尔地会遗漏东西。
“有精度和速度之间有一个权衡,”Driscoll说, “因此,硅谷所有的大型高科技公司都会使用两条管道:Kafka或Storm用于实时处理,然后Hadoop用于批处理系统,此时虽然是缓慢的但超级准确。”
Storm是用Scala编写的另一个框架,它在硅谷中因为流处理而受到了大量的青睐。它被Twitter纳入其中,勿庸置疑的,这样一来,Twitter就能在快速事件处理中得到巨大的裨益。