天才教育网合作机构 > 培训机构 >

天才领路者

欢迎您!
朋友圈

400-850-8622

全国统一学习专线 9:00-21:00

位置:培训资讯 > 总算认识如何自学大数据分析

总算认识如何自学大数据分析

日期:2019-10-07 13:36:31     浏览:279    来源:天才领路者
核心提示:信息每天都在以爆炸式的速度增长,其复杂性也越来越高,当人类的认知能力受到传统可视化形式的限制时,隐藏在大数据背后的价值就难以发挥出来。理解大数据并借助其做出决策,才能发挥它的巨大价值和无限潜力。

信息每天都在以爆炸式的速度增长,其复杂性也越来越高,当人类的认知能力受到传统可视化形式的限制时,隐藏在大数据背后的价值就难以发挥出来。理解大数据并借助其做出决策,才能发挥它的巨大价值和无限潜力。那么大数据有哪些类型呢,以下是小编为你整理的如何自学大数据分析  

大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。  

人为数据  

非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。  

移动数据  

能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。  

机器和传感器数据

如何自学大数据分析

 

这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)。  

大数据的概念  

现在越来越多的人喜欢网上购物,各种APP在网上选择,这些APP每天要面对几万几十万,甚至更多的信息,每个人的信息都要存储,简而言之,大数据就是这些存储的信息。  

比较学术的说法是:“大数据”是指以多元形式,自许多来源搜集而来的庞大数据组,往往具有实时性。在企业对企业销售的情况下,这些数据可能得自社交网络、电子商务网站、顾客来访纪录,还有许多其他来源。这些数据,并非公司顾客关系管理数据库的常态数据组  

如何理解大数据时代  

大数据时代的是信息的集中存储,集中分析,集中处理的一个时代,我们每一个人都是一个构成部分,一个人的电话,住址,性别,兴趣,需求等,和几千人的汇集在一起就是大的数据,如何存储,分析和处理,关系到一个企业的生死存亡。  

大数据的价值体现在以下几个方面:  

1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销  

2) 做小而美模式的中长尾企业可以利用大数据做服务转型  

3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值  

对于消费者来说仅仅是大数据里的一员,对于企业来说,如何使用大数据才是关键。  

大数据的本质  

大数据并不神秘,本质就是由于计算机软件硬件的发展,各种数据大量而且迅速的汇总起来的信息。服务者希望通过技术手段对这些信息加以分析利用,所起的一个顺应时代的名字而已。  

可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。  

数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

 

预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。  

语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。  

数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。  

基于底层数据交换的数据直接采集方式

通过获取软件系统的底层数据交换、软件客户端和数据库之间的网络流量包,基于底层IO请求与网络分析等技术,采集目标软件产生的所有数据,将数据转换与重新结构化,输出到新的数据库,供软件系统调用。  

技术特点如下:  

1. 无需原软件厂商配合;  

2. 实时数据采集,数据端到端的响应速度达秒级;  

3. 兼容性强,可采集汇聚Windows平台各种软件系统数据;  

4. 输出结构化数据,作为数据挖掘、大数据分析应用的基础;  

5. 自动建立数据间关联,实施周期短、简单高效;  

6. 支持自动导入历史数据,通过I/O人工智能自动将数据写入目标软件;  

7. 配置简单、实施周期短。  

基于底层数据交换的数据直接采集方式,摆脱对软件厂商的依赖,不需要软件厂商配合,不仅需要投入大量的时间、精力与资金,不用担心系统开发团队解体、源代码丢失等原因导致系统数据采集成死局。  

直接从各式各样的软件系统中开采数据,源源不断获取精准、实时的数据,自动建立数据关联,输出利用率极高的结构化数据,让不同系统的数据源有序、安全、可控的联动流通,提供决策支持、提高运营效率、产生经济价值。

如果本页不是您要找的课程,您也可以百度查找一下: