在维基百科中对数据挖掘的解释是:数据挖掘(英语:data mining)是一个跨*的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的数据集中发现模式的计算过程。数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。以下是小编为你整理的大数据实战学习教程
分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。
回归分析。回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。
聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。
关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。
导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的Naive Bayes,主要使用的工具有HadoopMahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。
Hadoop和Hive
一群基于Java的工具被开发出来以满足数据处理的巨大需求。Hadoop作为*的基于Java的框架用于批处理数据已经点燃了大家的热情。Hadoop比其他一些处理工具慢,但它出奇的准确,因此被广泛用于后端分析。它和Hive——一个基于查询并且运行在顶部的框架可以很好地结对工作。
Scala
Scala是另一种基于Java的语言,并且和Java相同的是,它正日益成为大规模机器学习,或构建高层次算法的工具。它富有表现力,并且还能够构建健壮的系统。
“Java就像是建造时的钢铁,而Scala则像黏土,因为你之后可以将之放入窑内转变成钢铁,”Driscoll说。
Kafka和Storm
那么,当你需要快速实时的分析时又该怎么办呢?Kafka会成为你的好朋友。它大概5年前就已经出现了,但是直到最近才成为流处理的流行框架。
Kafka,诞生于LinkedIn内部,是一个超快速的查询消息系统。Kafka的缺点?好吧,它太快了。在实时操作时会导致自身出错,并且偶尔地会遗漏东西。
“有精度和速度之间有一个权衡,”Driscoll说, “因此,硅谷所有的大型高科技公司都会使用两条管道:Kafka或Storm用于实时处理,然后Hadoop用于批处理系统,此时虽然是缓慢的但超级准确。”
Storm是用Scala编写的另一个框架,它在硅谷中因为流处理而受到了大量的青睐。它被Twitter纳入其中,勿庸置疑的,这样一来,Twitter就能在快速事件处理中得到巨大的裨益。
大数据系统应包含的功能模块
大数据系统应该包含的功能模块,首先是能够从多种数据源获取数据的功能,数据的预处理(例如,清洗,验证等),存储数据,数据处理、数据分析等(例如做预测分析,生成在线使用建议等等),*呈现和可视化的总结、汇总结果。
下图描述了大数据系统的这些高层次的组件:
本节的其余部分简要说明了每个组分
2.1 各种各样的数据源
当今的IT生态系统,需要对各种不同种类来源的数据进行分析。这些来源可能是从在线Web应用程序,批量上传或feed,流媒体直播数据,来自工业、手持、家居传感的任何东西等等。
显然从不同数据源获取的数据具有不同的格式、使用不同的协议。例如,在线的Web应用程序可能会使用SOAP / XML格式通过HTTP发送数据,feed可能会来自于CSV文件,其他设备则可能使用MQTT通信协议。
由于这些单独的系统的性能是不在大数据系统的控制范围之内,并且通常这些系统都是外部应用程序,由第三方供应商或团队提供并维护,所以本文将不会在深入到这些系统的性能分析中去。
2.2 数据采集
*步,获取数据。这个过程包括分析,验证,清洗,转换,去重,然后存到适合你们公司的一个持久化设备中(硬盘、存储、云等)。
在下面的章节中,本文将重点介绍一些关于如何获取数据方面的非常重要的技巧。请注意,本文将不讨论各种数据采集技术的优缺点。
2.3 存储数据
第二步,一旦数据进入大数据系统,清洗,并转化为所需格式时,这些过程都将在数据存储到一个合适的持久化层中进行。
在下面的章节中,本文将介绍一些存储方面的*实践(包括逻辑上和物理上)。在本文结尾也会讨论一部分涉及数据安全方面的问题。
2.4 数据处理和分析
第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。
在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的*实践。
2.5 数据的可视化和数据展示
*一个步骤,展示经过各个不同分析算法处理过的数据结果。该步骤包括从预先计算汇总的结果(或其他类似数据集)中的读取和用一种友好界面或者表格(图表等等)的形式展示出来。这样便于对于数据分析结果的理解。