天才教育网合作机构>

全国python学习中心

欢迎您!
朋友圈

400-850-8622

全国统一学习专线 9:00-21:00

位置:学校资讯 > python简单爬虫

python简单爬虫

日期:2023-03-31 16:43:15     浏览:701    来源:全国python学习中心
核心提示:如何入门 Python 爬虫现在之所以有这么多的小伙伴热衷于爬虫技术,无外乎是因为爬虫可以帮我们做很多事情,比如搜索引擎、采集数据、广告过滤等,以Python为例,Python爬虫可以用于数据分析,在数据抓取方面发挥巨大

如何入门 Python 爬虫

现在之所以有这么多的小伙伴热衷于爬虫技术,无外乎是因为爬虫可以帮我们做很多事情,比如搜索引擎、采集数据、广告过滤等,以Python为例,Python爬虫可以用于数据分析,在数据抓取方面发挥巨大的作用。
但是这并不意味着单纯掌握一门Python语言,就对爬虫技术触类旁通,要学习的知识和规范还有喜很多,包括但不仅限于HTML 知识、HTTP/HTTPS 协议的基本知识、正则表达式、数据库知识,常用抓包工具的使用、爬虫框架的使用等。而且涉及到大规模爬虫,还需要了解分布式的概念、消息队列、常用的数据结构和算法、缓存,甚至还包括机器学习的应用,大规模的系统背后都是靠很多技术来支撑的。
零基础如何学爬虫技术?对于迷茫的初学者来说,爬虫技术起步学习阶段,最重要的就是明确学习路径,找准学习方法,唯有如此,在良好的学习习惯督促下,后期的系统学习才会事半功倍,游刃有余。
用Python写爬虫,首先需要会Python,把基础语法搞懂,知道怎么使用函数、类和常用的数据结构如list、dict中的常用方法就算基本入门。作为入门爬虫来说,需要了解 HTTP协议的基本原理,虽然 HTTP 规范用一本书都写不完,但深入的内容可以放以后慢慢去看,理论与实践相结合后期学习才会越来越轻松。关于爬虫学习的具体步骤,我大概罗列了以下几大部分,大家可以参考:
网络爬虫基础知识:
爬虫的定义
爬虫的作用
Http协议
基本抓包工具(Fiddler)使用
Python模块实现爬虫:
urllib3、requests、lxml、bs4 模块大体作用讲解
使用requests模块 get 方式获取静态页面数据
使用requests模块 post 方式获取静态页面数据
使用requests模块获取 ajax 动态页面数据
使用requests模块模拟登录网站
使用Tesseract进行验证码识别
Scrapy框架与Scrapy-Redis:
Scrapy 爬虫框架大体说明
Scrapy spider 类
Scrapy item 及 pipeline
Scrapy 类
通过Scrapy-Redis 实现分布式爬虫
借助自动化测试工具和浏览器爬取数据:
Selenium + PhantomJS 说明及简单实例
Selenium + PhantomJS 实现网站登录
Selenium + PhantomJS 实现动态页面数据爬取
爬虫项目实战:
分布式爬虫+ 打造搜索引擎

Python爬虫是什么?

网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。
其实通俗的讲就是通过程序去获取web页面上自己想要的数据,也就是自动抓取数据。
爬虫可以做什么?
你可以用爬虫爬图片,爬取视频等等你想要爬取的数据,只要你能通过浏览器访问的数据都可以通过爬虫获取。
爬虫的本质是什么?
模拟浏览器打开网页,获取网页中我们想要的那部分数据
浏览器打开网页的过程:
当你在浏览器中输入地址后,经过DNS服务器找到服务器主机,向服务器发送一个请求,服务器经过解析后发送给用户浏览器结果,包括html,js,css等文件内容,浏览器解析出来*呈现给用户在浏览器上看到的结果。
所以用户看到的浏览器的结果就是由HTML代码构成的,我们爬虫就是为了获取这些内容,通过分析和过滤html代码,从中获取我们想要资源。

如何用Python爬虫抓取网页内容?

爬虫流程
其实把网络爬虫抽象开来看,它无外乎包含如下几个步骤
模拟请求网页。模拟浏览器,打开目标网站。
获取数据。打开网站之后,就可以自动化的获取我们所需要的网站数据。
保存数据。拿到数据之后,需要持久化到本地文件或者数据库等存储设备中。
那么我们该如何使用 Python 来编写自己的爬虫程序呢,在这里我要重点介绍一个 Python 库:Requests。
Requests 使用
Requests 库是 Python 中发起 HTTP 请求的库,使用非常方便简单。
模拟发送 HTTP 请求
发送 GET 请求
当我们用浏览器打开豆瓣首页时,其实发送的最原始的请求就是 GET 请求
import requests
res = requests.get('
print(res)
print(type(res))
>>>

python爬虫入门教程

很简单,三步,用爬虫框架scrapy
1. 定义item类
2. 开发spider类
3. 开发pipeline
如果有不会的,可以看一看《疯狂python讲义》

如何用Python做爬虫

1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中*个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的*问题在于,如果这个url不在set中,BF可以*确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了*的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
_queue = ()
bf = ()
initial_pages = "www..com"
while(True):
if request == 'GET':
if _queue.size()>0:
send(_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路*道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)

python爬虫需要什么基础

1. 学习Python基础知识并实现基本的爬虫过程

一般获取数据的过程都是按照 发送请求-获得页面反馈-解析并且存储数据 这三个流程来实现的。这个过程其实就是模拟了一个人工浏览网页的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,我们可以按照requests
负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

2.了解非结构化数据的存储

爬虫抓取的数据结构复杂 传统的结构化数据库可能并不是特别适合我们使用。我们前期推荐使用MongoDB 就可以。

3. 掌握一些常用的反爬虫技巧

使用代理IP池、抓包、验证码的OCR处理等处理方式即可以解决大部分网站的反爬虫策略。

4.了解分布式存储

分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis
这三种工具就可以了。

本文由 全国python学习中心 整理发布。更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,可以留下你的联系方式,让课程老师跟你详细解答:
咨询电话:400-850-8622