数学逻辑思维训练营 数学逻辑思维怎么训练
《咕力学数学之逻辑思维启蒙动画片全集》百度网盘免费下载
链接: ?pwd=1234
提取码:1234
发帖内容:美根据6Q法则,循序渐进通过生动有趣地动画,不断启发孩子的思维,培养孩子的逻辑能力,是一部励志向上,积极引导幼儿成长、融入数理逻辑学习、寓教于乐的系列动画片。整部动画色彩鲜明,情节引人入胜,能让宝宝在愉快的环境下,轻轻松松打好数学基础,深受小朋友和家长们的喜爱。这部动画片,耗时一年精心打造,通过一系列针对幼儿园小朋友的生活观察,策划出的寓教于乐的动画片。
课程名称:咕力学数学之逻辑思维启蒙动画片全集
资源目录:
第1集 探险家的工具箱
第2集 小小驯狗师
第3集 采蘑菇
第4集 哈哈变高啦
第5集 摘草莓喽
第6集 海岛奇遇记
第7集 超级魔术师
第8集 游乐园的彩灯
第9集 忙碌的厨师数学游戏
第10集 鱼儿舞蹈队
第11集 滑雪训练
第12集 生日蛋糕
第13集 农场的围栏数学游戏
第14集 小鸡去哪儿了数学游戏
第15集 咕力超市
第16集 农场大丰收啦
第17集 谁是大胃王
第18集 巧克力好心情
第19集 三色木桥
第20集 乱糟糟的游乐室
第21集 运货记
第22集 一起玩拼图
第23集 星球历险记
第24集 寻找三色花
第25集 神奇变变变
第26集 咕力们的愿望
数学逻辑思维训练有哪些方法
1.训练学生的数学思维要给材料 。要根据学生的思维特点、数学本身的性质向学生提供丰富的感性材料,以形成具体生动的表象和概念。随着年级的升高,具体形象的成分逐渐减少,抽象成分不断增加。概念、法则、性质、公式等理性材料日益积累,构成思维的素材,成为构建相应的数学认识模式的知识基础。如学生形成数的概念,构建四则运算系列的模式,掌握几何形体知识的结构大都需要丰富的材料。总的是遵循具体形象──形象抽象—逻辑抽象的规律,并带有某种创造性的萌芽。例如立方体概念的教学中,教师可以提供学生动手操作的素材,让学生动手实践,掌握概念。为使学生认识立方体有12条棱这一概念,教师可分别将11根、13根以及刚好是12根的小棒分别发给学生,要学生动手搭建立方体。学生通过实验发现:搭建一个立方体刚好需要12根小棒,从而让学生掌握立方体是有12条棱组成的这一概念。再如要让学生掌握立方体的12条棱都相等这一概念,教师可在分发12根小棒的小组中有意放一些12根小棒不相等的,让学生在“失败”的经验中认识立方体的12条棱必须相等。这样,学生根据教师提供的教学素材,经历着从展开的、物质的、外部的活动,逐步压缩、省略思维活动的具体环节直至内化为最简单的形式──立方体的概念。
2.训练学生的数学思维要有方向 。
*生学习数学的思维方向明显特点是单向直进,即顺着一个方向前进,对周围的其他因素“视而不见”。而皮亚杰认为思维水平的区分标志是“守恒”和“可逆性”。这里在所谓“守恒”就是当一个运算发生变化时,仍有某些因素保持不变,这不变的恒量称为守恒。而“可逆性”是指一种运算能用逆运算作补偿。学生要能进行“运算”,这个运算应当是具有可逆性的内化了的动作。因此,教师在教学中既要注重定向集中思维,又要注重多向发散思维。前者是利用已有的信息积累和记忆模式,集中向一个目标进行分析推理,全力找到*的合理的答案。后者是重组眼前或记忆系统中的信息,产生新的信息。解答者可以从不同角度,朝不同方向进行思索,探求多种答案。在对培养学生创造能力越来越强烈的今天,我们必须十分注重学生数学思维的方向性,要利用一切教材中的有利因素,训练学生一题多解、一题多变、一题多用的思维方法。
3.训练学生的数学思维应有系统 。
散乱无序的思维是不能正确反映客观世界的整体性的。“所谓智力的发展不是别的,只是很好组织起来的知识体系”,要使数学知识在考虑数学知识本身的逻辑系统和学生认知规律的相互作用下,能上下、左右、前后各个方向整合成一个纵向不断分化,横向综合贯通,联系密切的知识网络,使数、形、式各部分知识纵横联系,相互促进,广中求深。实践证明,知识联系越紧密,智力背景就愈广阔,迁移能力也就越强,创造性思维就越有可能。一个多方向、多层次的整体结构,对知识的理解、掌握、储存、检索和应用愈有利。但由于*身心发展的自身规律决定了教师在教学中不可能将知识一下子整体传授给学生,而是在教学时具有一定的等级层次性、阶段性,不同的层次、不同的阶段反映不同的思维水平和不同的思维品质。如*数学中整数计算的四次循环,分数、小数的两次循环。而三角形知识的两次教学等。教师在教学时应从整体的、系统的观点出发,明确每一层次、每一阶段对学生思维训练的要求,恰到好处地进行训练。
4.训练学生的数学思维应有规律 。
数学思维中的规律包括形式逻辑规律和辩证逻辑规律以及数学本身的特殊规律。它们之间又是相互联系的。存在着形式和内容、具体与抽象、特殊与一般的关系。要使学生学习富有成效,必须揭示知识的内在的联系与规律。如整数、小数、分数、百分数概念之间的联系;四则计算中的运算定律,是数系运算根据的通性公式;和、差、倍、分四种基本数量关系是各种应用题的基础等等。规律揭示得愈基本、愈概括,则学生的理解愈容易,愈方便,教学的效果也越好。因此,教师在新知识教学时,要充分利用迁移的功能,让学生用已有的知识和思维方法,去解决新的问题。如我们在教了“5乘以几”的乘法口诀后,可以让学生用这种思考方法去推导其他乘法口诀;学了“加法交换律”的推导后,可以同样的方法学习乘法交换律;学了“三角形的面积公式”推导后,可以同样的方法学习梯形的面积公式推导等等。
总之,只有当数学思维的材料是丰富的、广泛的、可变的;方向是明确的、清晰的、相对稳定的;内容是系统有序的、开放的、综合的;结构是有规律的、辩证的。层次的,才能发展学生思维的整体性,并使思维具有灵活性、深刻性、批判性、目的性、敏捷性甚至创造性,才有利于培养创造型人才。
如何训练数学逻辑思维能力
数学概念是抽象的、严谨的、系统的,而*生的心理特点则是容易理解和接受具体直观的感性知识。下面我给大家整理了关于如何训练数学 逻辑思维 能力,希望对你有帮助!
1如何训练数学逻辑思维能力
加强训练,培养学生思维的灵活性
为了保持学生对知识的记忆和发展学生的灵活思维,教师学要加强学生的题目训练,提高学生解题能力。在解题教学中,应该重视多种题型的训练。自编题不仅要考虑结构的合理性,以及数量关系的逻辑性和严密性,还要考虑到思维的灵活性,编题的过程实际上是培养学生初步逻辑思维的过程。一题多解的练习,既培养学生思维的灵活性与创造性,又激发学生学习的主动性和积极性。为了增强数学教学灵活性,教师还可以鼓励学生合作解题。数*目由于其自身特点,一道题可以有多个解题 方法 。针对这样的特点,可以在教学过程中采用合作探究式学习法对数学解题过程进行教学。
将学生分组,以问题为驱动教学的根本因素,按照“合作预习,探究答案,启发引导,巩固拓展”几个环节进行。首先教师根据教学大纲提出问题,学生按组设计和交流对问题的看法。然后让学生互动解题,通过多种途径找到解题的答案,开阔学生的思路。在学生解题过程中教师可以启发引导学生解决问题,对普遍存在的问题进行精讲。*通过各组将答案与解题思路的公开与讲解,促进所有学生对于不同解题思路的理解。教师再对学生掌握的知识进行评价,对学生掌握基础知识进行系统化,结合学生 教育 实际或社会 热点 问题对学生思维的升华,做到学以致用。在教学过程中充分突出学生的逻辑思维能力,使学生在学习中学会思考,既培养学生思维的灵活性与创造性,又激发学生学习的主动性和积极性。
讲清概念,建立学生思维的整体性
数学概念是抽象的、严谨的、系统的,而*生的心理特点则是容易理解和接受具体直观的感性知识。因此,我们在教学之始应该在数学与生活之间搭建起联系的桥梁,提供丰富典型、全面的感知材料,千方百计地充实学生的感性材料。概念引入的途径是多样的,可以通过直观引入,也可以从情境设疑和学生的生活实际引入。教师在设计具体情境时,切忌单刀直入,全盘托出,而是应该根据*生的年龄特征,紧密地联系学生已有的知识和 经验 ,循序渐进的引入。同时也要注意,概念的引入情境要突出概念的本质特征,情境一定要与概念的本质属性相关联,否则会因为远离教学内容而影响教学效果,有时甚至产生误导作用,将学生的思维引入歧途。
引入的路径要体现概念产生的背景,教师要根据概念产生的不同背景,因材施教,选定*的引入路径,尽力排除非本质属性的干扰,让学生尽快触及概念的本质特点,体现概念建立过程的高效化。掌握概念是一个复杂的认识过程,*生对概念的掌握往往不是一次能完成的,要由具体到抽象,再由抽象到具体多次进行往复。当学生初步建立概念后还需运用多种方法,促进概念在学生认知结构中的保持,并通过不断运用,加深对概念的理解和记忆,使新建立的概念得以巩固。概念总是一个一个进行教学的,因此在*生的头脑中,概念常常是孤立的,教学进行到一定程度时,要引导学生把学过的概念放在一起,寻找概念之间纵向或横向的联系,组成概念系统,使教材中的数学知识转化成为学生头脑中的认识结构,利于学生对知识的检索、提取和应用,促进知识的迁移,建立学生思维的整体性,发展学生的数学思维能力。
2数学 思维训练
重参与,求创新
新课标提出要培养学生的探究能力,数学课堂教学内容是触类旁通的,教师要转变观念,树立新的教学观。数学不仅仅是象牙塔中的学问,更是一门实践性很强的*。要创设丰富多彩的数学学习情境,将生活中的数学问题典型化,使数学问题生活化,让学生在不知不觉中参与到数学实践活动中,拉近学生与数学的距离,触动学生发现问题、研究问题、解决问题的欲望,从而产生学习数学的兴趣。在教师的指导下,学生主动参与创造发展,教师的主导作用体现在如何使学生主体发展上,在数学课堂上要给予学生充分的自主参与的机会,有良好的民主气氛,多鼓励少批评,树立学生信心,利用教材资源让学生能就情境而提出自己要问的数学问题。教师适时地引导让学生的问题合理化,激发学生的兴趣,能动手操作的由学生自己参与操作而得出结论。如此一来,学生的思维在潜移默化中得到了发展,而不是教师强加于他们的。当然学生探索中发现的错误,教师要引起重视,分析错误的原因,引导向正确的方向发展。
如此一来,我们曾经的教法研究就应转变到学法研究上。学生只有学会了学习,才会在学习中有所创新,将自己的个性显现出来。从数学的角度说,事物的正确答案只有一个,创新从何谈起呢?条条大路通罗马,目标只有一个,但能向目标的路途可以有多条。数学答案往往是的,但是解决问题寻求答案的方法可以是多样的。在教学活动中,教师要做好引导者的角色,帮助学生研究不同的解决问题的方式,突出求异思维,鼓励学生大胆假设,与学生一起认真而小心地求证。不要完全追求答案的完美,关键在于学生探索的过程、思维的过程。学生能够在学习情境中积极研究,使过程尽量充实,即使得出了错误的答案,也是非常有实际意义的数学学习实践。
重思维,讲合作
笔者认为:思维是智力的核心,要重视学生获取知识的思维过程。饱受批判的题海战术,从思维的角度上说,无非是以重复的过程,让学生重复解题的思维过程,使思维在反复中内化为自己的 思维方式 ,从而形成解决问题的能力。从根本上说,是训练学生的思维,关注学生的思维形成过程。只是这种方法过于机械化、形式化。且称为“海”,明显是用之偏颇,过犹不及。应当通过操作,观察,引导学生进行比较、分析综合,在感性材料基础上加以抽象概括,进行简单的判断、推理,培养初步的逻辑思维能力。培养学生的思维能力应贯穿课堂教学的全过程。
例如:在讲一步计算的除法应用题时,就应让学生说列式后再说一说你是怎样想的?让求份数和每份数应该用除法计算,在学生的头脑中有抽象的印象。从而能更进一步掌握一个数是另一个数的几倍是由求份数演变而来的,能够举一反三。关注学生思考问题的实际过程,看学生在遇到问题时是否思维,思维的路数。交流合作往往会有所发明创造,因此教学过程中要重视培养学生的合作精神,充分体现生与生、师与生多向交流,虽然主张合作但必须让学生有独立的思考之后再合作,让合作交流有目的性,通过同学之间讨论,做到资源共享,培养合作精神。
3数学思维训练
注意培养学生的分析、综合能力
分析与综合是思维的基本过程,也是重要的逻辑思维方法。根据学生的特点,在进行应用题教学时,我通常做法是引导学生从借助线段图进行分析,综合到根据所给的条件和问题进行分析、综合,重视概念教学,计算教学和几何初步知识教学中培养学生的分析、综合能力。
例如,在学习长方体、正方体后,我出示这样一道题:“一个棱长8厘米的正方体木块,表面全部涂上红颜色,然后把它分成棱长是2厘米的小正方体若干块,其中三面有红颜色,两面有红颜色,一面有红颜色,没有红颜色的各有多少块?”初看这道题,似乎不好下手。首先我并不急于让学生计算,而是先让学生说出正方体的特征,然后让学生探讨把大正方体分成棱长2厘米的小正方体若干块怎样分割;在取得一致结论后,接着让他们思考:分成的小正方体共有多少块? 再想一想:三面、两面、一面涂有红颜色的小木块在割开前各分布在大正方体木块的什么位置?(可画图帮助分析)在弄清这几个问题后,我因势利导让学生求答,通过分析,学生推出答案。
注意对学生进行抽象概括能力和推理能力的培养
首先,我出了这样一道题:“加工900个零件,小王单独做需要10小时完成,小李单独做需要15小时完成,两人合做几小时完成?”在学生分析了数量关系,求答以后,我先后又出示了这样两题让学生解答: 1.加工1800个零件,小王单独做需要10小时完成,小李单独做需要15小时完成,两人合做几小时完成? 2.加工180个零件,小王单独做需要10小时完成,小李单独做需要15小时完成,两人合做几小时完成?
解答完毕,我提出这样几个问题:(1)如果继续只改变要加工的零件总数,想一想两人合做完成任务的时间会不会变化?是多少?(2)为什么只改变工作总量的具体数量,并不改变合作的时间?(3)我们把工作总量用“一批零件”代替具体数量行不行?(4)把工作总量用单位“1”表示,这是一道什么应用题?(5)这道分数应用题是研究哪几个量之间的关系的?解答完毕,老师以肯定的口气告诉同学这样的题叫做研究工程问题的分数应用题。由整数的工作问题的思路发展到分数的工程问题的思路是知识本质的抽象,是解题思路的飞跃。在整个教学过程中,学生利用已有的知识思考问题,通过比较、分析、抽象、概括等逻辑思维活动,自己得出结论,不但在理解的基础上掌握了知识,而且在求知过程中发展了抽象概括和推理能力。
4数学思维训练
指导积极迁移,推进旧知向新知转化的过程。
数学教学的过程,是学生在教师的指导下系统地学习前人间接知识的过程,而指导学生知识的积极迁移,推进旧知向新知转化的过程,正是学生继承前人经验的一条捷径。*数学教材各部分内容之间都潜含着共同因素,因而使它们之间有机地联系着:挖掘这种因素,沟通其联系,指导学生将已知迁移到未知、将新知同化到旧知,让学生用已获得的判断进行推理,再获得新的判断,从而扩展他们的认知结构。
为此,一方面在教学新知时,要注意唤起已学过的有关旧知。如教学除数是小数的除法时,要唤起“商不变性质”、“小数点位置移动引起小数大小变化的规律”等有关旧知的重现;另一方面要为类比新知及早铺垫。如帮助学生认识一个数乘以分数的意义,要在教学整数、小数时就帮助学生理解一个数乘以整数、乘以小数就是……使学生在此前学习中所掌握的知识,成为“建立新的联系的内部刺激物和推动力”。
强化练习指导,促进从一般到个别的运用。
学生学习数学时、了解概念,认识原理,掌握方法,不仅要经历从个别到一般的发展过程,而且要从一般回到个别,即把一般的规律运用于解决个别的问题,这就是伴随思维过程而发生的知识具体化的过程。因此,一要加强基本练习,注重基本原理的理解;
二要加强变式练习,使学生在不同的数学意境中实现知识的具体化,进而获得更一般更概括的理解;三要重视练习中的比较,使学生获得更为具体更为精确的认识;四 要加强实践操作练习,促进学生“动作思维”。
如何训练数学逻辑思维能力相关 文章 :
★ 怎样训练提高数学的逻辑思维
★ 怎样提高数学的逻辑思维
★ 怎样去提高数学的逻辑思维
★ 如何建立数学逻辑思维
★ 怎样提高数学的逻辑思维?
★ 怎么提高数学的逻辑思维
★ 怎样提高学生的数学逻辑思维
★ 小孩怎样提高数学逻辑能力
★ 如何锻炼*生数学思维能力
如何锻炼自己的数学思维?
一、做出来不如讲出来,听得懂不如说得通。做10道题,不如讲一道题。孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。
原因:做10道数学题,不如让孩子“说”明白一道题。*数学,重在思维的训练,思维训练活了,升到初高中,数学都不会差到哪去。家长要加强孩子“说”题的训练,让孩子把智慧说出来。孩子能开口说解题思路,是*的思维训练模式。很多家长以为数学就是要多做题,可是有的孩子考试做错了题,但遇到同类或相似题型时,仍然一错再错。不妨让孩子把错题订正后,“说”清楚错误环节,这样孩子的思路一下子就豁然开朗了。
要培养质疑的习惯。在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。
在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。
二、举一反三,学会变通。
举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的东西上!
之前也常常听到家长反映,接到一些学生来信,说平时学习勤奋,请家教、上补习班,花了很多精力夯实基础知识,可考试时还是感觉反应慢、思路窄,只能就题论题,做不到举一反三,对于一些灵活性强的题目往往就束手无策。
在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。
举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。
三、建立错题本,培养正确的思维习惯
每上*次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。这些现象的发生,都是学生没有及时总结的原因。所以*次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。
一般来说,错题分为三种类型:*种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。
尤其第二种、第三种,必须放到错题本上。建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。
四、成为孩子探讨的伙伴,而非孩子的领导者
很多家长,在孩子学习的过程中,有意无意的说一些伤及孩子信心的话语,比如:真笨、你怎么跟你老爸一样,看看其他孩子,我怀疑你是不是亲身的,这道题都不会?快别上学了……。
我承认,思维能力是有超常的孩子,但觉对没有超笨的孩子,思维能力差,一定是外部环境与平时对孩子训练不够。
作为家长,孩子的*任老师和生命中影响力最重要的老师,要多表扬、多鼓励,与孩子成为问题探讨的伙伴,而不是孩子的教导者和管理者。
道理越辩越明。父母要在家庭中创设一种“自由争辩交流”的氛围,当孩子学习遇到困难的时候,争辩、互相交流解决问题的方法;当孩子自己获得新的解题方法时,家长要以平和的心态,耐心地和孩子一起讨论这个解题方法的独特之处。父母和孩子争辩解题思路,能促使孩子通过自由争辩,加深对问题的理解,拓宽思路,促使思维更灵活。这对突破固有的思维束缚、培养思维能力和品质有着良好的帮助。
五、图形推理是培养逻辑思维能力*的工具
假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。
几何图形是助其锻炼逻辑思维的好工具,经典的图形推理题总有其构思、思路、巧妙的思维;经典在于其看似变态,而实际解法却简而又简单。
因此,多训练一些图形推理题,对其逻辑思维很有帮助。
六、应巧妙利用生活中的数学提高思维能力
在家庭教育中经常有这种学以致用的机会,应该充分地加以利用。
(1)购物:低年级家长在购物中可以训练孩子的运算能力。例如拿10元钱购物,该花多少元?钱够不够?找回多少?高年级家长可以训练孩子在购物中思考哪种方法更优惠,哪种方法更合理。
(2)游戏:家长在和孩子游戏(搭积木、七巧板、下棋、摆小棒等)的同时,引导孩子用数学思考的方法去发现问题,解决游戏中的问题,提升游戏的技能与技巧。将逆推法,分类讨论法,假设法等等用于游戏当中。
(3)另外,在旅游或家庭进行投资时,都可以让孩子参与进来,进行旅游预算,运用数学思维合理安排旅游,使同样的钱发挥*的经济效益;核计投资彩票、股票,进行银行存款、贷款等。在家庭中运用数学方法练习解决现实生活实际问题,也不失为一种训练孩子数学思维的好办法。
七、奥数是把双刃剑
奥数本是数学,之所以在数学中分出一个模块为奥数,是因为数学本身是奥妙而有趣的,一部分逻辑思维特别强或者有规律可循的题组成了奥数体系,这个体系就是为了对孩子思维和分析能力培养。
而为什么现在奥数却成了一把双刃剑,有的家长反感,有的家长支持,90%的孩子都排斥。其实很多孩子很反感奥数,其实这与孩子本身没有多大关系,而是被舆论、被有些学校老师一味的反对而造成的心里排斥。
奥秘是奥妙、有趣的,有趣的东西为什么会变得让人反感呢?
从今天起,不要在孩子面前再提奥数,它就是数学,只是在基础题上的拓展和拔高,或者说是在已有知识和能接受的范围内培养一种发散思维、逻辑思维、逆推思维等的思维训练题,它有*的分类讨论思想和数形结合思想,引导对了,它是一门减压的*,何为增加压力?
一个亲身的例子,我带着一个3年数学1年学的班,班里孩子学习奥数的有,没学过奥数的也有,很明显,学过奥数的孩子接受能力很强、思考能力更没法比,*我不得不再次分层教学(其实我是很讨厌分层的),因为孩子的基础不一啊。
试问,这些学过奥数的孩子压力大,还是没有学过的压力大?
孩子心里不排斥,奥数就是以后数理化、包括语文等科目秘密武器。如果您或老师孩子给孩子树立一种“奥数没用论”,我建议趁早别说,奥数将封杀了孩子*一点的自信心。
思维其实就是直线和曲线。一般说的感性的人就是直线思维,是顺着一条道走到黑的,不懂得返回来看看其他世界。而我们是通过多训练,让孩子的思维慢慢可以转弯、回头,让孩子在面对生活中很多问题能有独立的思考、分析和判断能力。
新课程数学思维拓展训练
『壹』 数学思维训练到底有什么好处
其实单纯从孩子自身的发展来看,在有精力和时间的前提下,学习奥专数是没有任何坏处的。智属力,理科兴趣,和逻辑思维能力的开发对人来说*阶段是很关键的,现在来看奥数是这个阶段开发这些能力比较有效的方式,直到现在我还庆幸我*学过奥数,它是我在*和高中理科学习中有浓厚兴趣和成绩一直是佼佼者的重要原因。我觉得大家不应该太多在意这些非议,只要自己有时间和精力,去学一学,是有很多好处的。
另外就是锻炼孩子优良的意志品质。奥数知识有一定深度和难度,在学习过程中经常会遇到一些困难,有的题目就是花上几小时的时间也难以解答,在这个过程中经常鼓励和帮助孩子拥有一个良好的心态,培养持之以恒的耐心和克服难题的决心,以及战胜难题的勇气和意志,这也是在孩子一生的发展中不可缺少的素质。在这个过程中我们教师和家长万不可对学生施高压,不可急于求成,而更多的是鼓励,引导,关键是能培养兴趣和这些优秀的品质。
『贰』 数学思维训练与奥数有什么区别
1、定义不同
数学思维训练:奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。1934年和1935年,苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称。
奥数:国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有*的义务教育水平,难度大大超过*入学考试。
2、作用不同
数学思维训练: 全面开发孩子的左右脑潜能,提升孩子的学习能力、解决问题能力和创造力;帮助幼儿学会思考、主动探讨、自主学习,通过思维训练的数学活动和策略游戏, 对思维的广度、深度和创造性方面进行综合训练。
根据儿童身心发展的特点,提高幼儿的数学推理、空间推理和逻辑推理,促进幼儿多元智能的发展,为塑造幼儿的未来打下良好的基础。利用神奇快速的心算训练和思维启蒙训练,提高与智商最为相关的领域的基础能力。为解决*的难题而准备。
奥数:奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。
3、特点不同
数学思维训练:教材页面风格生动有趣,内容涵盖形状、对应、空间、方位、比较、分类、排序、图形、拼摆等多方面。系列课程逐步引导孩子走出单纯的知识记忆,轻松获得观察性思维能力、分析性思维能力、判断性思维能力、创造性思维能力、动手协调能力。
奥数:出题范围超出了所有*的义务教育水平,难度大大超过*入学考试。
『叁』 给一个**生数学思维拓展、有什么好方法吗
一、兴趣调动法
兴趣是学习的先导。浓厚的兴趣是思维兴奋的*催化剂。心理学证明,学生如果对所学材料不感兴趣,则思维就会处于抑制状态;反之,思维就会处于兴奋状态。据此,教师在教学过程中就必须首先设法激活学生的兴趣,然后用这个激活了的兴趣去启动学生的思维。
二、情感渲染法
如果说,兴趣是学习的先导,那么,情感则是学习的动力。语文*从*属性讲,属人文*的范畴,其自身拥有非常丰富的人文性。因此,同其他*相比,用“情”启“思”在语文教学中有着得天独厚的的条件。教学中,教师如能运用得当,将对学生的语文学习产生不可估量的积极作用。
三、信心鼓励法
信心是一个人学习取得成功的坚强柱石。心理学的研究表明,任何一个人,只要他坚信自己能学好,并且充满必胜的信心,那么,他的思维就会高度活跃。这时,不论学习什么材料,均会取得惊人的效果。
三、信心鼓励法
信心是一个人学习取得成功的坚强柱石。心理学的研究表明,任何一个人,只要他坚信自己能学好,并且充满必胜的信心,那么,他的思维就会高度活跃。这时,不论学习什么材料,均会取得惊人的效果。
五、欲望激励法
欲望是比兴趣更为强烈的一种学习动机。上课开始,教师若能采用有效的方法激发起学生的求知欲,使即将学习的知识,变成学生的一种内在渴求,那么,学生的思维便会十二分的兴奋。
六、知识启动法
根据教育心理学的“同化”理论,引导学生以旧知求新知,对启动学生的思维,也很有效。在课堂教学中,这种方法运用的十分普遍,且形式也十分多样。
七、问题启动法
教育心理学的研究表明,思维是从问题开始的。因此,在课堂教学的开头,教师如能设计一系列由浅入深的问题,然后引导学生带着这些问题读课文、找答案,则学生的思维会很快进入活跃的状态。这就是问题启动法。
『肆』 想要锻炼孩子的数学思维,你拍一的数学思维课程有哪些方面不错
1、从实际需求出发:比如说家人去买菜用哪种方式比较快捷到达目的地,又运内用哪些方法可以省钱。这些容实际的生活非常能够让孩子思考,孩子也容易理解,往往数学思维在不知不觉中形成了 。
2、从问题的突破口出发:比如说方程类的解答,孩子遇到某个题目觉得很繁琐,利用方程就会很简单,当孩子遇到某些难题难以解决的时候,总会需要找到突破口,比如逆向思维、对比思维等,这些突破口的过程,本身就是一场数学思维。
3、从实际的案例出发:有很多实际的典型案例,这些案例在课本上都有,利用这些案例,看看书本上是怎么分析的,哪怕孩子不能独立去完成,背会本身也有好处,可惜很多人只会说束手无策,导致越来越恶化。
4、结合逻辑思维来做训练。事实上数学思维本身就是一种逻辑思维,并且两者相辅相成。家长可以帮助孩子选择一些书籍,亦或是相关的逻辑训练工具,并且总结逻辑给孩子带来的好处等等, 用这些来指导数学思考方式。
5、鼓励孩子多提问:不要抑制孩子在学习过程的提问,这种提问和好奇是孩子学习的动力,将知识点与孩子年龄段能接受的方法告诉孩子才是最重要的,需要多加以引导。
『伍』 *数学思维拓展和思维训练有什么意思
锻炼……
『陆』 *数学思维拓展和思维训练有什么不同
*数学着重计算能力的培养,*数学开始有一些证明题和简化计算题,这个需要对公式定理的理解和运用能力,还需要逻辑推理能力。*数学其实不难的,重要的是对基本定理的理解。
『柒』 什么叫思维拓展培训
思维拓展训练是20世纪中期诞生的一种头脑智能开发和训练技术。其核心理念是相信“人脑可以像肌肉一样通过后天的训练强化”。
1、经过长期的探索实践,人们不仅掌握了有效开发头脑智能的方法,而且也形成了诸多的思维训练流派,其中以“思维工具”(即思维方法)的传授和训练为主要形式的思维训练技术在实践中取得了显著的效果。
2、在*,思维训练这一智力开发技术已经开始受到广泛的重视,除了在教育领域被应用于婴幼儿早教、中*生思维技能素质提升外,还被引进到企业培训领域,如创新思维训练、系统思维训练、战略决策思维训练、问题分析与解决技能训练等等。
(7)新课程数学思维拓展训练扩展阅读:
训练方法:
脑力激荡法:
脑力激荡法是最为人所熟悉的创意思维策略,该方法是由O *** orn早于1937年所倡导,此法强调集体思考的方法,着重互相激发思考,鼓励参加者于指定时间内,构想出大量的意念,并从中引发新颖的构思。
脑力激荡法虽然主要以团体方式进行,但也可于个人思考问题和探索解决方法时,运用此法激发思考。该法的基本原理是:只专心提出构想而不加以评价;不局限思考的空间,鼓励想出越多主意越好。 此后的改良式脑力激荡法是指运用脑力激荡法的精神或原则,在团体中激发参加者的创意。
逆向思考法:
逆向思考法是可获得创造性构想的一种思考方法,此技法可分为七类,如能充分加以运用,创造性就可加倍提高了。
『捌』 请问思维拓展训练怎么入门呢
适合学生
1.*,在校成绩优异,曾经接触过奥数,但未形成完整体系的学员,希望通过入门课程培养IQ,提升逻辑思维能力;
2. *,通过入门课程开始思维拓展训练,为参加希望杯、迎春杯、华杯等杯赛奠定基础。
课程特点
1. 数学和魔幻世界的探险之旅,成绩与兴趣同步提高;
2. 零基础,快入门,提前接触*知识,为进名校、分班提前储备;
3. 为即将参加希望杯、迎春杯等各大*杯赛的学员系统梳理奥数知识,积累夺冠资本;
课程目的
1. 通过短时间入门训练,学习奥数基本知识点、基本思维方式和基本技能、技巧;
2. 通过趣味奥数学习,改变对数学枯燥无味的看法,使厌倦数学的学员“爱上奥数”;
3. 与思维拓展精讲、思维拓展专题突破课程相结合、成体系,锻炼思维能力,培养优秀学员,为参加希望杯、迎春杯、华杯等杯赛取得证书增加筹码。
课程梗概
《*数学思维拓展趣味入门》是*培优规划的*步。*培优计划以培养优秀学员为目的,希望在学校名列前茅,永远保持绝对优势,或是通过闲暇时间培养逻辑思维、提升个人素质的学员适用本计划。
本系列通过让学员接触趣味奥数智力题,达到短时间内入门效果,提高学员数学学习与探索的兴趣,了解基本奥数知识点和原理,对奥数形成初步认识,心理上不再惧怕奥数。运用简单原理解释生活中常见简单数学问题,在日常学习中产生一定的心理优势,相比同龄人有更好的发展。
*最需要的数学逻辑思维,怎么培养
《常爸小鱼老师数学*训练营》百度网盘高清资源免费在线观看
链接:
提取码:32tx孩子若进入*,在数学的学习上缺乏方法,再加上粗心大意的毛病,很容易得不到好的学习效果。数学是一门高深而奥妙无穷的*,良好的学习方法对学好数学有很大的帮助。
数学思维是什么?应该如何培养孩子的数学思维?
数学思维是什么?应该如何培养孩子的数学思维?
孩子数学思维能力的培养是一个需要长期坚持的过程。而且,在不同的年龄阶段,培养的重点和方法有很大的不同。具体来说,我们可以从以下几个方面进行讨论。理由是什么思维是人脑对客观现实间接泛化的反映。包括间接性和概括性两个主要特征。数学思维不是一种知识,而是一种能力,或者更通俗的东西,一种感觉。无处不在(阿尔伯特爱因斯坦)。数学思维包括逻辑思维、形象思维、空间抽象思维等。思维发展的时间是2岁左右,2岁前是思维的准备时期。幼儿早期思维以直觉行为思维为主,主要依赖知觉和动作。幼儿中期的思维以具体的形象思维为主,主要依赖形象和表象。幼儿晚期抽象逻辑思维开始萌芽,主要依靠词汇的概括。4~12岁是儿童数学教育的*启蒙时期,12~18岁是*的发展时期。现阶段数学能力的培养对孩子思维方式的培养有决定性的影响。
幼儿数学思维训练方法在生活中选择适当的数学思维训练在生活中对幼儿进行数学思维训练例如,指导幼儿挑选自己喜欢的衣服和裤子,并指导孩子选择什么颜色的上衣和裤子。暂时渗透到数学搭配的思维训练中。通过有趣的游戏,通过家庭生活场所训练孩子们例如,假设房子里的一个房间是目的地。孩子去这里要坐几路公共汽车。从一个家到另一个家需要几分钟,中间能见到多少辆车,车牌多少,让孩子大声读车牌号码,或者快速加上这个车牌号码。训练了孩子的数学逻辑能力。你可以买拼图玩具和书积木等。让儿童体验成功的乐趣,培养幼儿的数学兴趣,建立对数学学习的自信,让幼儿喜欢数学。
青少年数学思维训练方法学好数学,环游世界,不怕”是被奉为老师的经典口头禅,使青少年数学思维的训练融入日常学习中。改变思维训练,在学习和解决过程中遇到障碍时,鼓励孩子们改变问题的方向,从不同的角度将问题从一种形式转换为另一种形式。找到*的方法,使问题更加简单明确。学习逻辑思维训练,一举一动,变通。孩子完成作业后,父母可以鼓励孩子解释数学作业的难题,也可以给学生解释过程。在这个解说过程中锻炼了孩子的逻辑思维能力。通过对概念的理解,对题型进行比较、分析、综合判断,训练了推理的思维过程。3.逆向和创新方法训练:让思维向问题的相反方向考虑,从问题的反面深入探索,提出与众不同的解决方案。学习应用思维导图,将知识串起来,制作思维导图,在制作思维导图的过程中,极大地训练了孩子们的总结分析能力。